Цпу — это… устройство, характеристики, основные функции и назначение центрального процессора компьютера
Содержание:
- Какие настройки в играх влияют на процессор
- Декодирование
- Процессорные ядра
- Типы процессоров
- См. также
- Работа микропроцессора на примере вычисления факториала
- На что обратить внимание при выборе процессора
- Тактовая частота
- Без банковской карты
- Характеристики процессора
- Подбор высоты строки/ширины столбца объединенной ячейки
- Shop-Script
- Компоненты частоты
- Структура
- Что такое центральный процессор ЦП
- Физическая оболочка процессора
- Что значит электронное и цифровое устройство
- Роль количества ядер, их влияние на производительность
- Фундамент любого процессора: архитектура набора команд
- Как работает компьютерный процессор
- Из чего состоит современный микропроцессор?
- Как устроен процессор
- Как работает процессор
- Перенос Яндекс.Ключа
Какие настройки в играх влияют на процессор
Давайте рассмотрим несколько современных игр и выясним, какие настройки графики отражаются на работе процессора. В тестах будут участвовать четыре игры, разработанные на собственных движках, это поможет сделать проверку более объективной. Чтобы тесты получились максимально объективными, мы использовали видеокарту, которую эти игры не нагружали на 100%, это сделает тесты более объективными. Замерять изменения будем в одних и тех же сценах, используя оверлей из программы FPS Monitor.
GTA 5
Изменение количества частиц, качества текстур и снижение разрешения никак не поднимают производительность CPU. Прирост кадров виден только после снижения населенности и дальности прорисовки до минимума. В изменении всех настроек до минимума нет никакой необходимости, поскольку в GTA 5 практически все процессы берет на себя видеокарта.
Благодаря уменьшению населенности мы добились уменьшения числа объектов сложной логикой, а дальности прорисовки – снизили общее число отображаемых объектов, которые мы видим в игре. То есть, теперь здания не обретают вид коробок, когда мы находимся вдали от них, строения просто отсутствуют.
Watch Dogs 2
Эффекты постобработки такие, как глубина резкости, размытие и сечение не дали прироста количества кадров в секунду. Однако небольшое увеличение мы получили после снижения настроек теней и частиц.
Кроме этого небольшое улучшение плавности картинки было получено после понижения рельефа и геометрии до минимальных значений. Уменьшение разрешения экрана положительных результатов не дало. Если уменьшить все значения на минимальные, то получится ровно такой же эффект, как после снижения настроек теней и частиц, поэтому в этом нет особого смысла.
Crysis 3
Crysis 3 до сих пор является одной из самых требовательных компьютерных игр
Она была разработана на собственном движке CryEngine 3, поэтому стоит принять во внимание, что настройки, которые повлияли на плавность картинки, могут не дать такого результата в других играх
Минимальные настройки объекты и частиц значительно увеличили минимальный показатель FPS, однако просадки все равно присутствовали. Кроме этого на производительности в игре отразилось после уменьшения качества теней и воды. Избавиться от резких просадок помогло снижение всех параметров графики на самый минимум, но это практически не отразилось на плавности картинки.
Battlefield 1
В этой игре присутствует большее разнообразие поведений NPC, чем в предыдущих, так что это значительно влияет на процессор. Все тесты проводились в одиночном режиме, а в нем нагрузка на CPU немного понижается. Добиться максимально прироста количества кадров в секунду помогло снижение качества пост обработки до минимума, также примерно этот же результат мы получили после снижения качества сетки до самых низких параметров.
Качество текстур и ландшафта помогло немного разгрузить процессор, прибавить плавности картинки и снизить количество просадок. Если же снизить абсолютно все параметры до минимума, то мы получим больше пятидесяти процентов увеличения среднего значения количества кадров в секунду.
Выводы
Выше мы разобрали несколько игр, в которых изменение настроек графики влияет на производительность процессора, однако это не гарантирует того, что в любой игре вы получите тот же самый результат
Поэтому важно подойти к выбору CPU ответственно еще на стадии сборки или покупки компьютера. Хорошая платформа с мощным ЦП сделает игру комфортной даже не на самой топовой видеокарте, а вот никакая последняя модель GPU не повлияет на производительность в играх, если не тянет процессор
В этой статье мы рассмотрели принципы работы CPU в играх, на примере популярных требовательных игр вывели настройки графики, максимально влияющие на нагрузку процессора. Все тесты получились максимально достоверные и объективные. Надеемся, что предоставленная информация была не только интересная, но и полезная.
Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.
Декодирование
Разговор о декодировании придется начать c рассмотрения филологических вопросов. Увы, далеко не все компьютерные термины имеют однозначные соответствия в русском языке. Перевод терминологии зачастую шел стихийно, а поэтому один и тот же английский термин может переводиться на русский несколькими вариантами. Так и случилось с важнейшей составляющей микропроцессорной логики «instruction decoder». Компьютерные специалисты называют его и дешифратором команд и декодером инструкций. Ни одно из этих вариантов названия невозможно назвать ни более, ни менее «правильным», чем другое. Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».
Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:
- В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
- В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
- В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)
Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.
Процессорные ядра
Некоторые устройства используют одноядерный процессор, в то время как другие могут иметь двухъядерный (или четырехъядерный и т.д.) Процессор. Работа двух процессорных блоков, работающих синхронно, означает, что центральный процессор может одновременно выполнять две команды каждую секунду, что значительно повышает производительность.
Некоторые CPU могут виртуализировать два ядра для каждого доступного физического ядра — метод, известный как Hyper-Threading. Виртуализация означает, что ЦП с четырьмя ядрами может функционировать так, как если бы он имел восемь, а дополнительные виртуальные ядра ЦП называются отдельными потоками. Физические ядра, тем не менее, работают лучше, чем виртуальные.
Если разрешить процессор, некоторые приложения могут использовать многопоточность. Если под потоком понимается единый элемент компьютерного процесса, то использование нескольких потоков в одном ядре ЦП означает, что большее количество инструкций можно понять и обработать одновременно. Некоторые программы могут использовать эту функцию на более чем одном ядре ЦП, что означает, что одновременно может обрабатываться еще больше задач.
Типы процессоров
Основной компанией, выпускающей ЦП для ПК, является компания Intel. Первым процессором для ПК был процессор $8086$. Следующей моделью была $80286$, далее $80386$, со временем цифру $80$ стали опускать и ЦП стали называть тремя цифрами: $286$, $386$ и т.д. Поколение процессоров часто называют семейством $x86$. Выпускаются и другие модели процессоров, например, семейства Alpha, Power PC и др. Компаниями-производителями ЦП также являются AMD, Cyrix, IBM, Texas Instruments.
В названии процессора часто можно встретить символы $X2$, $X3$, $X4$, что означает количество ядер. Например в названии Phenom $X3$ $8600$ символы $X3$ указывают на наличие трех ядер.
Итак, основными типами ЦП являются $8086$, $80286$, $80386$, $80486$, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron является урезанным вариантом процессора Pentium. После названия обычно указывается тактовая частота ЦП. Например, Celeron $450$ обозначает тип ЦП Celeron и его тактовую частоту – $450$ МГц.
Процессор нужно устанавливать на материнскую плату с соответствующей процессору частотой системной шины.
В последних моделях ЦП реализован механизм защиты от перегрева, т.е. ЦП при повышении температуры выше критической переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.
Определение 2
Если в вычислительной системе несколько параллельно работающих процессоров, то такие системы называются многопроцессорными.
См. также
Работа микропроцессора на примере вычисления факториала
факториал от 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120
На языке программирования C этот фрагмент кода, выполняющего данное вычисление, будет выглядеть следующим образом:
Когда эта программа завершит свою работу, переменная f будет содержать значение факториала от пяти.
Компилятор C транслирует (то есть переводит) этот код в набор инструкций языка ассемблера. В рассматриваемом нами процессоре оперативная память начинается с адреса 128, а постоянная память (которая содержит язык ассемблера) начинается с адреса 0. Следовательно, на языке данного процессора эта программа будет выглядеть так:
Теперь возникает следующий вопрос: а как же все эти команды выглядят в постоянной памяти? Каждая из этих инструкций должна быть представлена в виде двоичного числа. Чтобы упростить понимание материала, предположим, что каждая из команд языка ассемблера рассматриваемого нами процессора имеет уникальный номер:
- LOADA — 1
- LOADB — 2
- CONB — 3
- SAVEB — 4
- SAVEC mem — 5
- ADD — 6
- SUB — 7
- MUL — 8
- DIV — 9
- COM — 10
- JUMP addr — 11
- JEQ addr — 12
- JNEQ addr — 13
- JG addr — 14
- JGE addr — 15
- JL addr — 16
- JLE addr — 17
- STOP — 18
Будем считать эти порядковые номера кодами машинных команд (opcodes). Их еще называют кодами операций. При таком допущении, наша небольшая программа в постоянной памяти будет представлена в таком виде:
Как вы заметили, семь строчек кода на языке C были преобразованы в 18 строчек на языке ассемблера. Они заняли в ПЗУ 32 байта.
На что обратить внимание при выборе процессора
Это были 3 основных характеристики компьютерного процессора – теперь время для всего остального.
TDP процессора
Thermal Design Power – это, в теории, параметр, который указывает количество тепла выделяемое процессором, выраженное в ваттах (Вт). В теории, потому что как Intel, так и AMD используют различную методику оценки этого значения, поэтому значения в графе TDP имеют разный смысл.
AMD определяет максимальную мощность, которую процессор может принять и отдать в виде тепла. Intel определяет TDP как максимальную потребляемую мощность в виде тепла, когда процессор загружен приложениями.
В действительности, этот параметр имеет значение при выборе системы охлаждения, которая должна иметь запас производительности.
Интегрированная графическая система
Если ищите компьютер по низкой цене или предназначенный для мультимедиа, то стоит рассмотреть интегрированную графическую систему. Почти все процессоры Intel имеют встроенный процессор Intel ultra-hd Graphics, а в случае процессоров Ryzen ищите маркировку G.
Технологический процесс
По-другому называется литография. Именно от него, в значительной степени, зависит потребность в энергии и то, как много тепла будет выделять процессор. Современные процессоры Intel производятся в 12-нанометровому техпроцессу. Чипы AMD также изготовлены в литографии 12 нм, однако, обе компании используют немного другие детерминанты, и эти значения де-факто не равны.
Чем выше технологический процесс, тем больше тока будет потреблять процессор и тем больше тепла будет создавать.
Тактовая частота
Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.
Без банковской карты
Характеристики процессора
Практически любой процессор можно охарактеризовать тремя критериями.
- Тактовая частота. Это показатель, который отображает, какое количество задач в секунду может решать процессор. Чем больше это число, тем быстрее будет работать компьютер (или другое устройство), ведь тогда процессор сможет быстрее проводить вычисления и другие операции. За 1 такт процессор успевает выполнить какую-то часть своей задачи. Больше тактов – быстрее работа. Частота измеряется в мегагерцах (МГц). 1 МГц = 1 млн. тактов в секунду;
- Разрядность. Разрядность процессора – наибольшее число разрядов двоичного кода, с которым может работать процессор. ЦП, имеющий более высокую разрядность, может работать с более сложной и объемной информацией;
- Ядра и потоки. Ядро – физически обособленная часть процессора, которая имеет собственное вычислительное устройство и способно выполнять операции. Например, процессор, имеющий 1 ядро и 1 поток (или виртуальное ядро), может работать только над 1 операцией. Он переключается между инструкциями в порядке очереди и пока не выполнит существующую, не начнет выполнять следующую. Если ядер больше, например 4 (и 1 поток), то операций, которые могут выполняться одновременно также 4. Такие ЦПУ называются многоядерными. Что такое потоки? Теоретически, это то же самое, что и ядра. При наличии, например, 1 ядра и 2 потоков (ядро разбивается на 2 части) сразу 2 задачи (1*2) могут выполняться одновременно. Это называется гиперпоточностью. Когда ядро может виртуально разделяться на части и выполнять параллельно несколько задач. Если ядер 8, каждое из которых может работать над 2 операциями одновременно, получаем 8*2 = 16 операций “за 1 подход”.
Подбор высоты строки/ширины столбца объединенной ячейки
Shop-Script
Компоненты частоты
Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора
Правда, его задействовать нужно осторожно
Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.
Структура
Общая структура любого центрального процессора состоит из следующих блоков:
- Блока интерфейса;
- Операционного блока;
Блок интерфейса содержит следующие компоненты:
- Адресные регистры;
- Регистры памяти, в которых осуществляется хранение кодов передаваемых команд, выполнение которых планируется в ближайшее время;
- Устройства управления – с его помощью формируются управляющие команды, которые в дальнейшем выполняются ЦП;
- Схемы управления, отвечающие за работу портов и системных шин;
В операционный блок входят:
- Микропроцессорная память. Состоит из: сегментных регистров, регистров признаков, регистров общего назначения и регистров подсчитывающих количество команд;
- Арифметико-логическое устройство. С его помощью информация интерпретируется в набор логических, или арифметических операций;
Системная шина служит для передачи сигналов от центрального процессора к другим компонентам устройства. С каждым новым поколением структура процессора немного меняется и последние разработки сильно отличаются от первых процессоров, используемых на заре становления компьютерных технологий.
Что такое центральный процессор ЦП
Процессор (центральные процессорное устройство, ЦП, ЦПУ) — это электронная схема, которая обрабатывает и выполняет машинный код программного обеспечения на определенном устройстве. Осуществляет выполнение всех операций ввода и вывода, которые посылает ему программа.
Чаще всего центральный процессор вы можете увидеть в компьютерах, ноутбуках и мобильных устройствах. Но, они есть и в другой технике, например, в телевизорах.
Современные ЦП чаще всего представляют собой одну микросхему, размещенную на плате/чипе. Существует их множество разных видов, сейчас популярны и востребованы многоядерные модели, это когда на одном чипе находится сразу несколько процессоров.
Основные компоненты:
- АЛУ — Арифметико-логическое устройство. Осуществляет выполнение всех арифметических и логических данных, регистров, которые попадают сюда от операндов.
- Регистры. В них хранится текущая операция, промежуточные и финальные результаты вычислений АЛУ.
- Блок управления. Занимается координацией работы всех узлов ЦП, управляет его работой.
- Кэши данных и команд. В них хранятся часто используемые команды.
Термин «Процессор» использовался еще в 1 995 году, применяли его для обозначения вычислительных машин, которые выполняли сложные компьютерные программы. Первые ЦП делали для решения специфических задач, они были узкоспециализированными, но затем начали делать многоцелевые процессоры, которыми мы сейчас и пользуемся.
Как работает процессор
Центральный процессор выполняет команды, которые указывает ему программа, находящаяся в оперативной памяти. Обработка данных происходит так:
1. Оперативная память отправляет команды ЦП — в его КЭШ, откуда они уходят в блок управления.
2. Эти данные делятся на два вида и отправляются в регистры — значения в регистры данных и инструкции в регистры команд.
3. АЛУ обрабатывает данные из этих регистров и, затем также разделяет их на два вида — законченные и незаконченные, они идут обратно в регистры.
4. В кэше происходит их обработка, незаконченные и неиспользованные попадают в нижний регистр, а после обработки в верхний. Оттуда все отправляется в ОЗУ компьютера.
Все это кратко, как это выглядит графически, смотрите на скриншоте выше.
Физическая оболочка процессора
Несмотря на то, что большая часть этой статьи была посвящена сложным механизмам работы архитектуры процессора, не стоит забывать и о том, что все это должно быть создано и работать в виде реального, физического объекта.
Для того, чтобы синхронизировать работу всех компонентов процессора, используется тактовый сигнал. Современные процессоры обычно работают на частотах от 3.0 ГГц до 5.0 ГГц, и за последнее десятилетие ситуация особо не изменилась. При каждом цикле внутри чипа включаются и выключаются миллиарды транзисторов.
Такты важны для того, чтобы обеспечить идеальную работу каждой стадии вычислительного конвейера. Количество команд, обрабатываемых процессором за каждую секунду, зависит именно от них. Частоту можно увеличить путем разгона, сделав чип быстрее, но это в свою очередь повысит энергопотребление и тепловыделение.
Фото: Michael Dziedzic
Тепловыделение — главный враг процессоров. Когда цифровая электроника нагревается, может начаться разрушение микроскопических транзисторов. Это в свою очередь может привести к повреждению чипа, если тепло не отвести. Чтобы этого не произошло, каждый процессор оборудован термораспределителями. Сам кристалл может занимать всего 20% площади процессора, ведь увеличение площади позволяет более равномерно распределять тепло по радиатору. Кроме того, дополнительно увеличивается количество имеющихся ножек процессора (контактов), предназначенных для взаимодействия с другими компонентами компьютера.
На современных процессорах может располагаться свыше тысячи входных и выходных контактов на задней панели. Мобильный чип может быть оснащен всего несколькими сотнями, поскольку большинство вычислительных элементов расположены уже внутри чипа. Независимо от дизайна, около половины из них предназначены для распределения питания, а остальные — для передачи данных с оперативной памяти, чипсета, накопителей, устройств PCIe и др. Высокопроизводительным процессорам, потребляющим сто и более ампер при полной нагрузке, нужны сотни ножек для равномерного распределения тока. Обычно они покрываются золотом для улучшения проводимости. Стоит отметить, что разные производители располагают ножки по-разному во всей своей многочисленной продукции.
Что значит электронное и цифровое устройство
Рассмотрим устройство процессора компьютера. Сначала расшифруем отдельно прилагательные «электронное» и «цифровое».
Вместе с тем в радиоэлектронике электронные устройства делятся на 2 больших класса: аналоговые и цифровые.
Упомянутые аналоговые устройства преобладали среди радиоэлектронной аппаратуры 20-30 лет назад. А появились они тогда, когда радиоинженеры научились записывать и передавать звук и изображение в виде аналоговых сигналов. Это были радиоприемники, телевизоры, магнитофоны и т.п.
Аналоговые устройства уступили пальму первенства лишь в конце прошлого века, когда развитие цифровых устройств привело к тому, что с помощью цифровых кодов научились записывать и передавать любую информацию, включая уже упомянутые звуки и изображения.
Цифровые сигналы в отличие от аналоговых в незначительной степени подвержены помехам и без искажения передаются на расстояния. Они лучше записываются, хранятся и не «портятся» со временем.
Роль количества ядер, их влияние на производительность
Первоначально ЦП имели только одно ядро. Однако на рубеже XX и XXI веков инженеры пришли к выводу, что стоит увеличить их количество. Это должно было позволить получить более высокую вычислительную мощность, а также позволить обрабатывать несколько задач одновременно.
Но для начала стоит разобраться с главным мифом. Принято считать, что чем больше ядер у процессора, тем больше мощности он будет предлагать. Но на практике все не так просто. Реальное влияние на производительность оказывают и другие факторы – например, тактовая частота, объем кэша, архитектура, количество потоков.
Дополнительные ядра означают, что процессор способен одновременно справляться с большим количеством задач. Однако здесь нельзя забывать об одном: несмотря на популяризацию четырех-, шести- или восьмиядерных процессоров, приложения используют один или два потока
Поэтому количество потоков ядра также важно учитывать
Например, если первый ЦП имеет 2 ядра 4 потока, а второй 4 ядра 4 потока, то разница в производительности будет небольшая. Однако если сравнить первый чип с 4-ядерным 8-поточным, то в данном случае производительность возрастет на 50 %.
Фундамент любого процессора: архитектура набора команд
Первое, на что натыкаешься при разборе любого процессора — это на архитектуру набора команд (ISA). Архитектура является чем-то вроде фундамента работы процессора и именно от нее зависит то, как он работает и как все внутренние системы взаимодействуют друг с другом. Существует огромное количество архитектур, но самыми распространенными являются x86 (преимущественно в стационарных компьютерах и ноутбуках) и ARM (в мобильных устройствах и встроенных системах).
Чуть менее распространенными и более нишевыми являются MIPS, RISC-V и PowerPC. Архитектура набора отвечает за ряд основных вещей: какие инструкции процессор может обрабатывать, как он взаимодействует с памятью и кэшем, как задача распределяется по нескольким этапам обработки и др.
Чтобы лучше понять устройство процессора, разберем его элементы в том порядке, по которому выполняются команды. Различные типы инструкций могут следовать разными путями и использовать разные компоненты ЦП, поэтому здесь они будут обобщены, чтобы охватить максимум. Начнем с базового дизайна одноядерных процессоров и постепенно будем переходить к более продвинутым и сложным экземплярам.
Как работает компьютерный процессор
Перед тем, как разобрать основные принципы работы CPU, желательно ознакомиться с его компонентами, ведь это не просто прямоугольная пластина, монтируемая в материнскую плату, это сложное устройство, образующееся из многих элементов. Более подробно с устройством ЦП вы можете ознакомиться в нашей статье, а сейчас давайте приступим к разбору главной темы статьи.
Подробнее: Устройство современного процессора компьютера
Выполняемые операции
Операция представляет собой одно или несколько действий, которые обрабатываются и выполняются компьютерными устройствами, в том числе и процессором. Сами операции делятся на несколько классов:
- Ввод и вывод. К компьютеру обязательно подключено несколько внешних устройств, например, клавиатура и мышь. Они напрямую связаны с процессором и для них выделена отдельная операция. Она выполняет передачу данных между CPU и периферийными девайсами, а также вызывает определенные действия с целью записи информации в память или ее вывода на внешнюю аппаратуру.
- Системные операции отвечают за остановку работы софта, организовывают обработку данных, ну и, кроме всего, отвечают за стабильную работу системы ПК.
- Операции записи и загрузки. Передача данных между процессором и памятью осуществляется с помощью посылочных операций. Быстродействие обеспечивается одновременной запись или загрузкой групп команд или данных.
- Арифметически-логические. Такой тип операций вычисляет значения функций, отвечает за обработку чисел, преобразование их в различные системы исчисления.
- Переходы. Благодаря переходам скорость работы системы значительно увеличивается, ведь они позволяют передать управление любой команде программы, самостоятельно определяя наиболее подходящие условия перехода.
Все операции должны работать одновременно, поскольку во время активности системы за раз запущено несколько программ. Это выполняется благодаря чередованию обработки данных процессором, что позволяет ставить приоритет операциям и выполнять их параллельно.
Выполнение команд
Обработка команды делится на две составные части – операционную и операндную. Операционная составляющая показывает всей системе то, над чем она должна работать в данный момент, а операндная делает то же самое, только отдельно с процессором. Выполнением команд занимаются ядра, а действия осуществляются последовательно. Сначала происходит выработка, потом дешифрование, само выполнение команды, запрос памяти и сохранение готового результата.
Благодаря применению кэш-памяти выполнение команд происходит быстрее, поскольку не нужно постоянно обращаться к ОЗУ, а данные хранятся на определенных уровнях. Каждый уровень кэш-памяти отличается объемом данных и скоростью выгрузки и записи, что влияет на быстродействие систем.
Взаимодействия с памятью
ПЗУ (Постоянное запоминающее устройство) может хранить в себе только неизменяемую информацию, а вот ОЗУ (Оперативная память) используется для хранения программного кода, промежуточных данных. С этими двумя видами памяти взаимодействует процессор, запрашивая и передавая информацию. Взаимодействие происходит с использованием подключенных внешних устройств, шин адресов, управления и различных контролеров. Схематически все процессы изображены на рисунке ниже.
Если разобраться о важности ОЗУ и ПЗУ, то без первой и вовсе можно было бы обойтись, если бы постоянное запоминающее устройство имело намного больше памяти, что пока реализовать практически невозможно. Без ПЗУ система работать не сможет, она даже не запустится, поскольку сначала происходит тестирование оборудования с помощью команд БИОСа
Работа процессора
Стандартные средства Windows позволяют отследить нагрузку на процессор, посмотреть все выполняемые задачи и процессы. Осуществляется это через «Диспетчер задач», который вызывается горячими клавишами Ctrl + Shift + Esc.
В разделе «Быстродействие» отображается хронология нагрузки на CPU, количество потоков и исполняемых процессов. Кроме этого показана невыгружаемая и выгружаемая память ядра. В окне «Мониторинг ресурсов» присутствует более подробная информация о каждом процессе, отображаются рабочие службы и связанные модули.
Сегодня мы доступно и подробно рассмотрели принцип работы современного компьютерного процессора
Разобрались с операциями и командами, важностью каждого элемента в составе ЦП. Надеемся, данная информация полезна для вас и вы узнали что-то новое
Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.
Из чего состоит современный микропроцессор?
Структура процессора сегодня представлена следующими основными элементами:
- Собственно, ядро процессора. Наиболее важная деталь, сердце устройства, которая называется также кристаллом или камнем современного микропроцессора. От характеристик и новизны ядра напрямую зависит разгон и оперативность работы микропроцессора.
- Кэш-память является небольшим, но очень быстрым накопителем информации, расположенным прямо внутри процессора. Используется микропроцессором в целях значительного уменьшения времени доступа к основной памяти компьютера.
- Специальный сопроцессор, благодаря которому и производятся сложные операции. Такой сопроцессор в значительной мере расширяет функциональные возможности любого современного микропроцессора и является его неотъемлемой составляющей. Встречаются ситуации, когда сопроцессор является отдельной микросхемой, однако, в большинстве случаев, он встроен непосредственно в компьютерный микропроцессор.
Путем буквального разбора компьютерного процессора мы сможем увидеть следующие элементы строения, представленные на схеме:
Верхняя металлическая крышка используется не только для защиты «камня» от механических повреждений, но также для отвода тепла.
Непосредственно, кристалл или камень является самой важной и дорогостоящей деталью любого компьютерного микропроцессора.Чем сложнее и совершеннее такой камень, тем быстродействующей является работа «мозга» любого компьютера.
Специальная подложка с контактами на обратной стороне завершает конструкцию микропроцессора, как представлено на картинке. Именно благодаря такой конструкции тыльной стороны и происходит внешнее взаимодействие с центральным «камнем», непосредственно оказывать влияние на сам кристалл невозможно
Скрепление всего строения осуществляется с помощью специального клея-герметика.
Как устроен процессор
Процессор состоит главным образом из 3 компонентов: арифметико-логическое устройство, устройство управления (АЛУ и УУ соответственно) и регистры памяти. Рассмотрим каждое подробнее.
Арифметико-логическое устройство
Как можно догадаться по названию это нечто, производящее все логические и арифметические вычисления. Часть ЦП, которая занимается только подсчетом и операциями, такими как вычитание, сложение, логические операции (“или”, “и”, “не”, “исключающее или” и другие).
Устройство управления
Этот компонент ЦПУ предназначен для работы с командами. Простыми словами, это “менеджер”, который принимает инструкции, прочитывает их и принимает различные решения. Такое устройство отдает распоряжения и управляет работой других компонентов компьютера.
Существует несколько видов УУ:
- Построенный на жесткой логике;
- Микропрограммируемый.
Первый тип УУ невозможно модифицировать и изменять его поведение и реакцию на различные команды без физического вмешательства. Это объясняется тем, что характер работы задается устройством печатной платы или кристаллом (более глубокие элементы внутреннего строения УУ). Второй тип как раз таки больше поддается различным изменениям, так как его можно запрограммировать под любые задачи. Стоит отметить, что УУ, построенный на жесткой логике, работает быстрее, в то время как микропрограммируемый УУ более гибкий.
Регистры
Фактически, регистры – внутренние ячейки памяти процессора. 1 регистр – это минимальная ячейка в памяти, которая состоит из логических элементов. Такие ячейки были придуманы с целью ускорения работы процессора с данными. Зачастую ЦПУ нужно сохранять какую-либо информацию (адреса ячеек в памяти, инструкции и другие данные) на момент, пока она не пригодится вновь. И существует множество операций, которые проходят через ЦП и требуют неоднократного использования одних и тех же данных. Так вот регистры и призваны для сохранения таких данных. Они находятся “ближе” к процессору, чем постоянная память или ОЗУ и, таким образом, позволяют брать данные и записывать новые значительно быстрее. Особенно, если одну и ту же информацию необходимо использовать процессору многократно.
Вся работа между регистрами, устройствами ввода-вывода, памятью и компонентами процессора происходит по шине данных и шине адреса. Первая отвечает за хранение непосредственно информации, а вторая за адреса ячеек, в которых и хранится эта информация.
Каждый регистр состоит из триггеров, которых существует 2 вида: асинхронный и синхронный. По функциональному назначению их разделяют на 4 группы: RS-триггер, JK-триггер, T-триггер и D-триггер.
Как работает процессор
Рассмотрим схему, которая описывает весь цикл работы ЦП над определенной задачей.
- Из некоторой “кучи” команд выбирается та, до которой дошла очередь. Порядок очереди определяется с помощью специального счетчика. Команда берется из определенной ячейки в памяти, а счетчик команд увеличивается на 1 (взяли команду, увеличиваем счетчик на 1, чтобы очередь дошла до следующей);
- Команда, которая была выбрана, отправляется в устройство управления. УУ считывает адресное поле, выбранной команды из памяти, и полученные операнды направляются в АЛУ на специальные регистры;
- УУ продолжает читать код команды и распознает операции, которые записаны в коде. Далее выдается сигнал в АЛУ для выполнения найденных операций;
- На этом этапе происходит вычисление операций в АЛУ и сохранение результата в самом ЦПУ. Если в команде присутствовал адрес ячейки для хранения результата, он будет помещен в нее;
- Этапы 1-4 повторяются в порядке очереди до тех пор, пока УУ не “наткнется” на команду “стоп”, которая и означает конец инструкций.