Компиляторы
Содержание:
- IoT
- Классификация трансляторов
- Зачем нужен компилятор?
- Кросс-курс 160 Рублей (Россия) к другим валютам
- Компиляция программ Linux
- Справочная информация
- Виды компиляторов
- Генерация кода
- Рекомендации по применению формата
- Особенность подключения пользовательских библиотек в Си
- Структура компилятора
- Структура компилятора
- Оптимизация компиляторов
- История появления
- Виды компиляторов
- Основные функционал и терминология[ | код]
IoT
Классификация трансляторов
Транслятор (англ. translator — переводчик) — это программа-переводчик. Она преобразует программу, написанную на одном из языков программирования, в бинарный файл программы, состоящей из машинных команд, либо непосредственно выполняет действия программы.
Трансляторы реализуются в виде компиляторов, интерпретаторов, препроцессоров и эмуляторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.
Компилятор (англ. compiler — составитель, собиратель) — читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, то есть бинарный файл, содержащий перечень машинных команд. Бинарный файл может быть исполняемым, библиотечным, объектным), он выполняется.операционной системой без участия компилятора.
Интерпретатор (англ. interpreter — истолкователь, переводчик) — переводит программу построчно (по одному оператору) в машинный код (команды процессора, ОС, иной среды), выполняет переведенный оператор (строку программы), а затем переходит к следующей строке программного текста. Интерпретатор не формирует исполняемых файлов, он сам выполняет все действия, записанные в тексте исходной программы.
После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы.
Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.
Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию — в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.
С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.
Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.
Препроцессор — это транслятор с одного языка программирования в другой без создания исполняемого файла или выполнения программы.
Препроцессоры удобны для расширения возможностей языка и удобства программирования путем использования на этапе написания программы более удобного для человека диалекта языка программирования и ее перевода препроцессором на текст стандартного языка программирования, который можно откомпилировать стандартным компилятором.
Эмулятор — функционирующее в некоторой целевой операционной системе и аппаратной платформе программное и/или аппаратное средство, предназначенное для исполнения программ, изготовленных в другой операционной системе или работающих на отличном от целевого аппаратном обеспечении, но позволяющее осуществлять те же самые операции в целевой среде, что и в имитируемой системе.
К эмулирующим языкам относятся такие системы, как Java, .Net, Mono, в которых на этапе создания программы производится ее компиляция в специальный байт-код и получение бинарного файла, пригодного для исполнения в любой операционной и аппаратной среде,а исполнение полученного байт-кода производится на целевой машине с помощью простого и быстрого интерпретатора (виртуальной машины).
Реассемблер, дизассемблер — программное средство, предназначенное для расшифровки бинарного кода с представлением его в виде текста ассемблера или текста иного языка программирования, позволяющее проанализировать алгоритм исходной программы и использовать полученный текст для необходимой модификации программы, к примеру поменять адреса внешних устройств, обращения к системным и сетевым ресурсам, выявить скрытые функции бинарного кода (к примеру, компьютерного вируса или иной зловредной программы: трояна, червя, кейлоггера и пр.).
Знаете ли Вы, что абстракция через параметризацию — это прием программирования, позволяющий, используя параметры, представить фактически неограниченный набор различных вычислений одной программой, которая есть абстракция этих наборов.
Зачем нужен компилятор?
Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.
Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.
Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.
Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.
Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.
Кросс-курс 160 Рублей (Россия) к другим валютам
Компиляция программ Linux
Первое что нам понадобиться — это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.
Получение исходников
Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:
Давайте загрузим сами исходники нашей программы с помощью утилиты git:
Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:
Настройка configure
Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.
Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:
Также для создания этого скрипта можно воспользоваться утилитой automake:
Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.
После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:
Рассмотрим наиболее часто используемые, стандартные для всех программ опции:
- —prefix=PREFIX — папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
- —bindir=DIR — папка для размещения исполняемых файлов, должна находится в PREFIX;
- —libdir=DIR — папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
- —includedir=DIR — папка для размещения man страниц;
- —disable-возможность — отключить указанную возможность;
- —enable-возможность — включить возможность;
- —with-библиотека — подобно enable активирует указанную библиотеку или заголовочный файл;
- —without-библиотека — подобное disable отключает использование библиотеки.
Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае ./configure есть, и мы можем его использовать:
Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()… configure: error: NOT FOUND!
В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:
Приставка lib всегда добавляется перед библиотеками, а -dev — означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.
Сборка программы
Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:
Дальше осталось установить саму программу, если вы использовали опцию prefix, чтобы не устанавливать программу в основную файловую систему, то можно применить стандартную опцию make:
После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь — создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:
Затем просто установите получившийся пакет с помощью dpkg:
После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.
Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:
Команда удалит все файлы, которые были скопированы в файловую систему.
Справочная информация
ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной
Виды компиляторов
- Векторизующий. Базируется на трансляторе, транслирующем исходный код в машинный код компьютеров, оснащённых векторным процессором.
- Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
- Диалоговый. См.: диалоговый транслятор.
- Инкрементальный. Пересобирает программу, заново транслируя только измененные фрагменты программы без перетрансляции всей программы.
- Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
- Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
- Отладочный. Устраняет отдельные виды синтаксических ошибок.
- Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
- Самокомпилируемый. Написан на том же языке программирования, с которого осуществляется трансляция.
- Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.
Генерация кода
Генерация машинного кода
Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен физическим процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной.
Результат компиляции — исполнимый программный модуль — обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.
Для каждой целевой машины (IBM, Apple, Sun, Эльбрус и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов команд). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.
Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. (Пример: PureBasic, транслирующий бейсик-код в ассемблер FASM.) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в том числе ручной оптимизации) программистом.
Генерация байт-кода
Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной. Такой язык называется псевдокодом или байт-кодом. Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения — Common Language Runtime (CLR).
Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.
Динамическая компиляция
Основная статья: Динамическая компиляция (англ.)
Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).
Наиболее популярной разновидностью динамической компиляции является JIT. Другой разновидностью является инкрементальная компиляция.
CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.
Рекомендации по применению формата
Особенность подключения пользовательских библиотек в Си
Подключение пользовательской библиотеки в Си на самом деле не так просто, как кажется.
Рассмотрим пример: есть желание вынести часть кода в отдельный файл — пользовательскую библиотеку.
program.c
#include «mylib.h»const int MAX_DIVISORS_NUMBER = 10000;int main(){ int number = read_number(); int Divisor; size_t Divisor_top = 0; factorize(number, Divisor, &Divisor_top); print_array(Divisor, Divisor_top); return 0;}
Сама библиотека должна состоять из двух файлов: mylib.h и mylib.c.
mylib.h
#ifndef MY_LIBRARY_H_INCLUDED#define MY_LIBRARY_H_INCLUDED#include <stdlib.h>//считываем числоint read_number();//получаем простые делители числа// сохраняем их в массив, чей адрес нам переданvoid factorize(int number, int *Divisor, int *Divisor_top);//выводим числоvoid print_number(int number);//распечатывает массив размера A_size в одной строке через TABvoid print_array(int A[], size_t A_size);#endif // MY_LIBRARY_H_INCLUDED
mylib.c
#include <stdio.h>#include «my_library.h»//считываем числоint read_number(){ int number; scanf(«%d», &number); return number;}//получаем простые делители числа// сохраняем их в массив, чей адрес нам переданvoid factorize(int x, int *Divisor, int *Divisor_top){ for (int d = 2; d <= x; d++) { while (x%d == 0) { Divisor = d; x /= d; } }}//выводим числоvoid print_number(int number){ printf(«%d\n», number);}//распечатывает массив размера A_size в одной строке через TABvoid print_array(int A[], size_t A_size){ for(int i = A_size-1; i >= 0; i—) { printf(«%d\t», A); } printf(«\n»);}
Препроцессор Си, встречая #include «mylib.h», полностью копирует содержимое указанного файла (как текст) в место вызова директивы. Благодаря этому на этапе компиляции не возникает ошибок типа Unknown identifier при использовании функций из библиотеки.
Файл mylib.c компилируется отдельно.
А на этапе компоновки полученный файл mylib.o должен быть включен в исполняемый файл program.exe.
Cреда разработки обычно скрывает весь этот процесс от программиста, но для корректного анализа ошибок сборки важно представлять себе как это делается
Структура компилятора
Процесс компиляции состоит из следующих этапов:
- Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
- компоновка машинно-ориентированной программы.
Структурные реализации компилятора могут быть следующими:
- И транслятор, и компоновщик могут целиком входит в состав компилятора как исполняемое программы.
- Компилятор сам выполняет лишь трансляцию компилируемой программы, компоновка же программы выполняется вызываемой компилятором отдельной программой-компоновщиком. Практически все современные компиляторы построены по такой схеме.
- Пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики.
По первой схеме строились самые первые компиляторы, — для современных компиляторов такая схема построения нехарактерна.
По второй схеме построены все без исключения компиляторы с языков высокого уровня. Любой такой компилятор сам выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Такая схема построения легко позволяет компилятору работать и в режиме транслятора с соответствующего языка программирования. Этот обстоятельство нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа все же выполняют компоновку, пусть и силами вызываемого компилятором внешнего компоновщика, тогда как транслятор сам никогда не выполняет вызов внешнего компоновщика. Но это же обстоятельство позволяет компилятору с одного языка программирования на фазе компоновки включать в программу написанную на одном языке программирования функции-подпрограммы из уже оттранслированных соответствующим транслятором/компилятором, написанные на ином языке программирования. Так в программу на С/С++ можно вставлять функции написанные например на Pascal или Fortran. Аналогично и напротив написанная на С/С++ функции могут быть вставлены в Pascal- или Fortran-программу соответственно. Это было бы невозможно без поддержки многими современными компиляторами генерации кода вызова процедур (функций) в соответствии с соглашениями иных языков программирования. Например современные компиляторы с языка Pascal помимо организации вызова процедур/функций в стандарте самого Pascal поддерживают организацию вызова процедурой/функцией в соответствии с соглашениями языка С/С++. (Например чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.)
Наконец по третьей схеме построены компиляторы, представляющие собой целые системы, включающие в себя трансляторы с разных языков программирования и компоновщики. Также любой такой компилятор может использовать в качестве транслятора любой способный работать в режиме транслятора компилятор с конкретного языка высокого уровня. Естественно такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.
Трансляция программы как неотъемлемая составляющая компиляции включает в себя:
- Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
- Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в древо разбора.
- Семантический анализ. На этой фазе древо разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их объявлениям, типам данных, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным древом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
- Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
- Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.
Структура компилятора
Процесс компиляции состоит из следующих этапов:
- Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
- компоновка машинно-ориентированной программы.
В первом случае компилятор представляет собой пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики. Такой компилятор может компилировать программу, разные части исходно текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.
Во втором случае компилятор де-факто выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Этот факт нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа поддерживают организацию импорта программой процедуры (функции) из уже оттранслированого программного модуля, написанного на другом языке программирования. Так в программу на С/С++ можно импортировать функцию написанную например Pascal или Fortran. Аналогично и напротив написанная на С/С++ функция может быть импортирована в Pascal- или Fortran-программу соотвественно. Это как правило было бы невозможно без поддержки многими современными компиляторами организации обработки входных данных в процедуру (функций) в соответствии с соглашениями других языков программирования. Например современные компиляторы с языка Pascal помимо соглашения самого Pascal поддерживает организацию обработки процедурая/функцией входных в соответствии с соглашениями языка С/С++. (Чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.) Примерами таких компиляторов являются компиляторы со всех без исключения языков программирования, используемые непосредственно.
Трансляция программы как неотъемлемая составляющая компиляции включает в себя:
- Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
- Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.
- Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
- Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
- Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.
Оптимизация компиляторов
Оптимизация компилятора — это процесс улучшения качества объектного кода без изменения получаемых им результатов.
Разработчики первого компилятора FORTRAN стремились сгенерировать код, который был бы лучше, чем средний ручной ассемблер, чтобы клиенты действительно могли использовать их продукт. В одном из первых настоящих компиляторов им часто это удавалось.
Более поздние компиляторы, такие как компилятор IBM Fortran IV, уделяли больше внимания хорошей диагностике и более быстрому выполнению за счет оптимизации объектного кода. Только в серии IBM System / 360 IBM предоставила два отдельных компилятора: быстро исполняющийся модуль проверки кода и более медленный оптимизирующий.
Фрэнсис Э. Аллен , работая в одиночку и совместно с Джоном Коке , представила многие концепции оптимизации. В статье Аллена 1966 года « Оптимизация программ» было введено использование структур данных графа для кодирования содержимого программы для оптимизации. В ее статьях 1970 года « Анализ потока управления» и «Основы для оптимизации программ» установлены интервалы как контекст для эффективного и действенного анализа и оптимизации потока данных. В ее статье 1971 года «Кок», «Каталог оптимизирующих преобразований», впервые были описаны и систематизированы оптимизирующие преобразования. Ее статьи 1973 и 1974 годов по анализу межпроцедурных потоков данных распространили анализ на целые программы. В ее статье 1976 года с Коке описана одна из двух основных аналитических стратегий, используемых сегодня при оптимизации компиляторов.
Аллен разработала и реализовала свои методы в составе компиляторов для IBM 7030 Stretch — Harvest и экспериментальной системы Advanced Computing System . Эта работа позволила установить возможности и структуру современных машинно-независимых оптимизаторов. Затем она основала и возглавила проект PTRAN по автоматическому параллельному выполнению программ FORTRAN. Ее команда PTRAN разработала новые схемы обнаружения параллелизма и создала концепцию графа зависимости программы, основного метода структурирования, используемого большинством распараллеливающих компиляторов.
«Языки программирования и их компиляторы » Джона Кока и Джейкоба Шварца , опубликованные в начале 1970 года, посвятили алгоритмам оптимизации более 200 страниц. Он включал многие из уже знакомых нам техник, таких как устранение избыточного кода и снижение стойкости .
Оптимизация глазка
Оптимизация с помощью глазка — очень простой, но эффективный метод оптимизации. Он был изобретен Уильямом М. МакКиманом и опубликован в 1965 году в CACM. Он использовался в компиляторе XPL, который помог разработать МакКиман.
Оптимизатор COBOL Capex
Корпорация Capex разработала «Оптимизатор COBOL» в середине 1970-х годов для COBOL . В данном случае оптимизатор этого типа зависел от знания «слабых мест» стандартного компилятора IBM COBOL и фактически заменял (или исправлял ) участки объектного кода более эффективным кодом. Код замены может заменить линейный поиск в таблице с помощью бинарного поиска , например , или иногда просто заменить относительно «медленный» команду с известной быстрее той , которая была в противном случае функционально эквивалентны в его контексте. Эта техника теперь известна как « снижение силы ». Например, на оборудовании IBM System / 360 инструкция CLI была, в зависимости от конкретной модели, в два-пять раз быстрее, чем инструкция CLC для однобайтовых сравнений.
Современные компиляторы обычно предоставляют параметры оптимизации, поэтому программисты могут выбирать, выполнять ли проход оптимизации.
История появления
Виды компиляторов
- Векторизующий. Базируется на трансляторе, транслирующем исходный код в машинный код компьютеров, оснащённых векторным процессором.
- Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
- Диалоговый. См.: диалоговый транслятор.
- Инкрементальный. Пересобирает программу, заново транслируя только измененные фрагменты программы без перетрансляции всей программы.
- Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
- Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
- Отладочный. Устраняет отдельные виды синтаксических ошибок.
- Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
- Самокомпилируемый. Написан на том же языке программирования, с которого осуществляется трансляция.
- Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.
Основные функционал и терминология[ | код]
Компиля́ция — сборка программы, включающая:
- трансляцию всех модулей программы, написанных на одном или нескольких исходных языках программирования высокого уровня и/или языке ассемблера, в эквивалентные программные модули на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера) или непосредственно на машинном языке или ином двоичнокодовом низкоуровневом командном языке
- и последующую сборку исполняемой машинной программы, в том числе вставка в программу кода всех функций, импортируемых из статических библиотек и/или генерация кода запроса к ОС на загрузку динамических библиотек, из которых программой функции будут вызываться.
Если компилятор генерирует исполняемую машинную программу на машинном языке, то такая программа непосредственно исполняется физической программируемой машиной (например компьютером). В других случаях исполняемая машинная программа выполняется соответствующей виртуальной машиной.
Входная информация для компилятора есть:
- на фазе трансляции: исходный код программы, являющийся описанием алгоритма или программы на предметно-ориентированном языке программирования;
- на фазе компоновки: сгенерированные на фазе трансляции файлы объектных кодов модулей программы, а также файлы объектных кодов статических библиотек и данные о используемых динамических библиотеках.
На выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код, байт-код).
Компили́ровать — проводить сборку машинной программы, включая:
- трансляцию с предметно-ориентированного языка на машинно-ориентированный язык,
- компоновка исполняемой машинно-ориентированной программы из сгенерированных на фазе трансляции объектных модулей — модулей, содержащих части кода программы на машинно-ориентированного кода программы.
Довольно часто компиляторы с языков высокого уровня выполняют лишь трансляцию исходного кода, компоновку же поручая внешнему компоновщику, — компоновщику, представляющему самостоятельную программу, вызываемую компилятором как внешняя подпрограмма. Вследствие этого компилятор многие считают разновидность транслятора, что неверно…